Ultrafast many-body electron dynamics in a strongly correlated ultracold Rydberg gas

Kenji Ohmori

Institute for Molecular Science, National Institutes of Natural Sciences,
Myodaiji, Okazaki 444-8585, Japan
E-mail: ohmori@ims.ac.jp

Many-body correlations govern a variety of important quantum phenomena such as the emergence of superconductivity and magnetism in condensed matter. Understanding quantum many-body systems is thus one of the central goals of modern sciences. Here we demonstrate a new pathway towards this goal by generating a strongly correlated ultracold Rydberg gas with a broadband picosecond laser pulse. We have applied our ultrafast and ultrahigh-precision coherent control [1-8] to this strongly correlated Rydberg gas, and have successfully observed and controlled its many-body electron dynamics on the attosecond timescale [9]. Our approach will offer a versatile platform to observe and manipulate nonequilibrium dynamics of strongly correlated quantum many-body systems on the ultrafast timescale.

References
 (Highlighted by Nature 465, 138 (2010); Physics 3, 38 (2010)).
 (Highlighted by Nature Physics 7, 373 (2011); Nature Photonics 5, 382 (2011)).
 (Highlighted by Science 354, 1388 (2016); IOP PhyscisWorld.com (2016)).